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ABSTRACT  
This research project presents a novel swarm versus swarm approach for efficiently neutralizing intruding 
drones, possibly evolving in swarms, using the same or a higher number of collaborative autonomous 
drones. Each drone in the swarm executes independently its actions in coordination with the rest of the 
swarm to counteract up to five enemy drones per mission. Our methodology leverages a sequential 
decision-making process, dividing the mission into distinct phases - approach, tracking, and 
neutralization- to minimize conflicts during swarm interactions and to enhance control during 
autonomous operations. In addition, we delimited a protected flight zone where the intrusion of any enemy 
drone is strictly forbidden and would be considered a mission failure. To ensure safe navigation in 
complex environments, we propose restricting the defensive swarm’s flight to a delimited airspace called 
a buffer zone, encompassing the protected zone. Any intrusion in the buffer zone triggers a response from 
our system which in turn allows a coordinated series of actions by the defensive swarm to prevent the 
enemy drone from entering the protected zone. We use a multi-agent deep reinforcement-learning 
framework with centralized training on a simulator and decentralized execution, optimizing the decision-
making process in simple simulated environments before testing in realistic simulators and deploying real 
drones for field operations.  

Our approach integrates an optimized and dynamic target assignation algorithm for the shortest route 
assignment able to re-plan at each time step. After assignation, at each time step, each agent of the swarm 
uses a multi-agent deep reinforcement-learning model to approach and track a target. When an agent 
meets the criteria to start the neutralization phase, the autonomous navigation control of the selected 
agent switches to a catching navigation mode, while the rest of the swarm continues tracking if there are 
no other threats in the buffer zone. Moreover, the navigation decision-making process is combined with 
adaptive collision avoidance capabilities that depend on the mission phase and decisions from the pre-
trained AI navigation model. The collision avoidance capabilities mitigate the risks of colliding against 
other agents of the same defensive swarm, detected target entities and other detected objects (e.g., birds). 
This ensures robust navigation and efficient tracking in complex environments. These functions are 
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coordinated with a sensing one, where an algorithm controls the orientation in yaw and pitch and the 
zoom of the gimbal mounted EO sensor embedded on each drone.  

The proposed system demonstrates effective performance in neutralizing small swarms through a sequential 
decision-making process of switching algorithms while maintaining safe navigation, from detection to 
neutralization, in simulation. During the simulations, the defensive drones use a net mechanism for catching 
the intruders with high performance. Moreover, we deployed drones in the field facing enemy drones 
detected by a ground radar on real flight demonstrations and validating this autonomous decision-making 
process. Our research contributes to advancing the state-of-the-art in swarm-based decision-making tactics 
and opens new avenues for using collaborative swarms in defense and military operations within the 
NATO context. 

1.0 INTRODUCTION 

With the advent of technology and the growing relevance of artificial intelligence (AI) in various armed 
forces around the world, the concept of unmanned and autonomous military systems has taken centre stage. 
The world has gradually moved the focus of its military activities from human-centred operations to AI-
powered operations. Drones, for instance, have been significantly leveraged in the past decade due to their 
technological sophistication and efficient manoeuvrability, which serves as a critical component for 
contemporary military operations. Their commendable surveillance reach, precision targeting, and damage 
assessment capabilities have combined to make a significant contribution to operational outcomes [1]. Due 
to their high mobility, easy deployment, and an array of sensor accommodation capabilities, UAVs have 
found their use in multiple capacities [2]–[5], which has led to new security risks when the UAVs are 
misused. The danger posed by enemy drone swarms has invigorated the development of counteracting drone 
swarm systems. The idea of creating defensive drone swarms to counteract invading swarms is not new and 
has been explored in the literature [6]. Nevertheless, the full potential of UAVs is limited by the consistent 
challenges presented by autonomous navigation and artificial intelligence integration [7], [8]–[11]. 
Moreover, the integration of AI, although promising in the aspects of problem-solving and resource 
management, grapples with obstacles such as lengthy training time, computational power, complexity, 
information updating, and quick environmental adaptation [11].  

Current research also exhibits substantial focus on collision avoidance systems that aim to forewarn 
operators of imminent collisions for autonomously control systems to steer clear of incoming threats [13], 
[14]. These systems can be divided into global path planning, which considers the entire environment, and 
local path planning, which focuses on changes detected in the immediate environment [15]. Despite 
significant advancements in obstacle detection, collision avoidance, path planning, localization, and control, 
ensuring safe navigation still presents a poignant challenge, especially in volatile environments involving 
multiple UAVs and moving obstacles [16], [20]– [22], [12], [23], [25].  

Swarms of UAVs have received considerable attention in recent times due to their collaborative and 
cooperative functionality, offering substantial benefits over single UAV systems [17]– [19]. However, the 
present state-of-the-art has ample room for improvement of the overall system performance and to ensuring 
the safety and success of autonomous UAV for real flight operations.  

These persisting issues prompt the need for unconventional approaches and innovative perspectives that 
could contribute a new solution to the shortcomings of the current systems. In this article, we present our 
solution to neutralize a swarm of drones by leveraging our own fleet of drone and utilizing an adaptive 
navigation system which includes multi-agent deep reinforcement learning. By optimizing the utilization of 
multi-agent deep reinforcement learning (MARL) algorithms and heuristics, this research presents a 
promising pathway to enhancing safer adaptive navigation measures. 
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1.1 Overview of the Proposed Approach  
This research proposes an end-to-end autonomous decision-making navigation procedure encompassing 
different mission phases that intricately interplay with sensing and neutralization capabilities. At each phase, 
the AI agent of each drone has the capability of using different navigation models or rules to increase its 
performance and control along a mission. The interplay of different navigation algorithms has been tested on 
simulations, as well as during real flight demonstrations. 

Crucially integrated within these phases is an advanced collision avoidance mechanism, based on the 
artificial field potentials concept [25], that changes dynamically depending on the reliability of data 
information. This system is designed to prevent drones from colliding with other drones from the defensive 
swarm as well as with detected target entities and unexpected detected objects, such as birds. Such collision 
avoidance capabilities ensure the integrity of our drones while maintaining an efficient targeting system. The 
assignation of targets to each member of the defending swarm is managed by a combinatorial optimal 
algorithm. Furthermore, an autonomous sensing control algorithm was designed, tested and deployed in 
simulations and real flight demonstrations. It controls the pan, tilt and zoom of a gimbal-mounted camera to 
track visually the targets. In the next section, we further define and detail each decision-making component 
of the system and mission phase. 

2.0 METHODOLOGY 

The design principle segregates the mission into different phases - approach, tracking, and neutralization. 
The idea behind this segregation is to allow unique processes for each phase. For the approaching and 
tracking phases, a Multi-Agent Deep Reinforcement Learning (MARL) model is used for navigation to 
achieve higher performance in following the target. For the neutralizing phase, a rule-based algorithm is used 
instead. This algorithm’s deterministic nature allows for more direct control, a crucial aspect when 
attempting to neutralize a target safely and efficiently. The navigation is coupled with autonomous sensing 
control to provide a visual tracking of the targets by the operator. Since a defending swarm might face 
multiple intruders, a dynamic target assignation combinatorial algorithm is set in place. The objective is to 
counteract the drone threats that can be presented inside the buffer zone before reaching a protected area. 
The buffer zone refers to a three-dimensional geodetic polygon, bound by a minimum and maximum 
altitude, within which the autonomous defending drones operate. When one or more intruder drones (i.e., 
targets) are detected inside the buffer zone, the defending swarm starts the counteracting operation entering 
an “approaching” phase to an assigned target.  

2.1 Dynamic Target Assignation Algorithm 
Every autonomous drone in the defensive swarm is strategically assigned to one target drone within the 
enemy swarm. The composition of the antagonist swarm can range from one to five drones, whereas the 
defending force always maintains a strength of five drones. The drone-to-target association relies on a rule-
based combinatorial strategy that calculates the best plan of action by computing the minimal collaborative 
distance each drone needs to traverse with respect to every target drone. The primary objective lies in 
counteracting each intruding drone with at least one from our swarm.  

Formally speaking, we determine what it is the assignation  of a defending drone  to an enemy 
drone that minimizes the function:  

, ,  

This function, however, is subject to conditions to ensure that each target has at least one assigned defending 
drone i.e.,  and that each defending drone has only one target to handle i.e., . Note 



 
 

Efficient Swarm Neutralization in Complex Environments Using 
Multi-Agent Deep Reinforcement Learning and Adaptive Navigation Strategies 

4 STO-MP-SET-315-22 

 
 

that these conditions are only valid when our number of defending drones is equal to or higher than the 
number of intruding drones . One way to solve this optimization problem is by using a grid search at each 
timestep. Nevertheless, this method is only feasible for flight trials when there is not a high number of drones 
to compute all possible combinations since its computational complexity is . In our experiments, the 
computational complexity of this method did not present a problem when computed at each time step for 
experiments run with and . 

This allocation process ensures that the defensive drones on a neutralization mission are strictly dedicated to 
that task, unaffected by other drones in the swarm. The shortest route assignment and re-planning happen at 
every timestep, providing an adaptive response to rapidly evolving field situations. Once a drone completes 
its mission of securing a target and relocating it in a retrieval area, it can re-align itself with the rest of the 
swarm to support tracking of any remaining targets, leveraging its embedded camera system. 

2.2 Autonomous Collaborative Swarm Navigation 
A multi-agent deep reinforcement learning (MARL) model is used during the approaching and tracking 
mission phases for autonomous collaborative drone navigation. The approaching phase marks the start of the 
mission, beginning when the defending drones are getting in motion towards a new target and ending when 
they get close to that target. In this phase, our main objective is to navigate the defensive swarm from their 
point of origin to the intruder’s vicinity. We accomplish this by employing MARL model to calculate the 
best trajectory for each drone. The success of this phase is defined by the swarm’s ability to cover the 
distance to the incoming drone(s) effectively while maintaining safe navigation. Following the approaching 
phase, the drones enter the tracking phase. In this phase, the drones stay near the target, observing its 
movement while waiting for a rule or command to transition into the neutralizing phase. Moreover, adaptive 
collision avoidance capabilities come into play intensively, preventing collisions with other defensive 
drones, targeted entities or detected objects. 

2.2.1 Deep Multi-Agent Reinforcement Learning Algorithm for Navigation 

The choice of MARL is guided by its strengths in providing solutions in environments characterized 
by continuous action spaces and a high number of agents, a typical scenario in drone swarm vs. swarm 
applications.  

In the context of MARL, we adopted different off-policy algorithms with centralized training and 
decentralized execution. A well-known representation of this algorithm is the Multi-Agent Deep 
Deterministic Policy Gradient (MADDPG) algorithm [26]. In essence, MADDPG allows an agent to 
incorporate policies of other agents while maximizing its own expected reward. This sharing in turn leads the 
agents of the swarm to exhibit collaborative behaviour when the expected reward is shared among the agents 
of the swarm. The key principles of MADDPG can be synthesized as maximizing the reward function by 
learning from experiences collected in a buffer. MADDPG utilizes two main neural networks, with other 
neural networks for learning stability. One of the networks is known as the Critic . The Critic is trained to 
estimate the cumulative reward along timesteps based on the current observations, known as the multi-
agent state  and the actions of all  agents in the swarm. The estimated value for agent 

is known as the value, where 

. 

In the case of the critic network, the update function of the weights  is as follows: 
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In this equation,  is the target value defined as: 

 

The Critic network, however, is artificially created and it works only for training purposes. This is because it 
has access to the current actions of all the agents of the swarm, which might not be possible in real flights. 
This is known as centralized training. The execution must be able to be carried out with no centralization, 
meaning that the agent has only the information about its own states and actions. For that, the other neural 
network, the Actor , can make decisions to take an action  based uniquely on its current local state . 
The Actor model, during training, uses the value produced by the Critic and it updates its neural network by 
the gradients of the Critic network and the Actor’s actions as: 

. 

Here,  represents the learning rate,  denotes the replay buffer,  and  are the current and next states,  is 
the action,  is the reward and  is the discount factor. Note that this type of MARL algorithm can provide 
decentralized execution to drones, while working collaboratively. The mission goal could then be encoded as 
the reward function that the neural networks using MARL attempt to optimize at each iteration. 

2.2.2.1 Reward Function 

In MARL, rewards play a pivotal role as they define the quality of actions thus guiding the following ones. 
In the context of our drone swarm system, we have designed a dual reward criterion: an individual reward 
and team rewards for approaching and tracking phases.  

In the approaching and tracking phases, an individual drone is awarded based on its proximity with the 
target; specifically, the Euclidean distance ( ) between the agent’s position and the enemy’s  
position is included in the computation of the reward. Mathematically, this distance-based individual reward 
function can be simply formulated as: 

 

The objective of having a negative “reward” value is to encourage the agent to minimize this value, thus, the 
distance to the detected enemy as soon as possible. There is a navigation collaborative reward based on the 
distance, to promote smart collaborative behaviour among the agents of the swarm. It is described as the 
cumulative distance of the detected enemies with respect to their closest defending drone: 

 

The neural network models were trained with a reward “neutralization” bonus, meaning that if any agent of 
the team reached a Euclidean distance below a neutralization threshold (e.g., 30 meters), there is a positive 
bonus (e.g., +50) to each member of the team. Therefore, the reward function for an agent is represented by: 

. 

The union of these reward strategies contributes to the synergy and efficiency of the defensive swarm during 
the whole mission lifecycle. 
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2.2.2 Adaptive Collision Avoidance  

In the real-world deployment of our defensive drone swarm, one of the most critical aspects of their 
operational efficiency and safety hinges on collision avoidance algorithms. In our deployment, collision 
avoidance fields include interactions with friendly entities (drone peers within the same swarm), hostile 
entities (target drones), neutral objects (birds or other flying objects), and the borders of the buffer zone. The 
latter is crucial as it prevents our drones from straying out of the allowed flight area. The collision avoidance 
fields (i.e., local fields) are dynamic depending on the uncertainty provided by the sensors on the position of 
the entities inside the buffer zone. When computation errors or malfunctions occur, a local field could 
potentially produce a very high repulsion, pushing the drones out of the buffer zone. To prevent this, we have 
set a threshold value (maximum safety distance). When the computed safety distance exceeds this threshold, 
the movement of the drone is halted, effectively freezing its position. This ensures that the drone swarm 
remains within the defined operational area and avoids being repelled outward due to excessive uncertainty 
or computational error. A “minimum safety distance” is parametrized to ensure that, even without 
uncertainty in the estimated positions, the drone respects a safety distance to prevent accidental collisions. 

In the range in between the minimum and maximum local field radius, we dynamically adapt the local field 
to the position uncertainty collected by the sensors. We use the position uncertainties of each observed entity 
as a covariance ellipsoid in a 3D matrix form . Then, we use our current 3D position and compute the 
Mahalanobis distance [27] from an entity as: 

. 

The radius of the collision avoidance field is then the proportion of the distance between the defending 
drone position and the entity of interest and its Mahalanobis distance to this entity. This is represented as: 

 

Moreover, we define the repulsion of the entity  to be cubic, following the logic of navigation within a 3D 
space, and it is computed as: 

, 

where is a constant function that determines the repulsion factor based on the cubic norm , and 
is the unit vector that will provide direction of the repulsion. 

To be noted that when the uncertainty of the positions is near zero, the Mahalanobis distance will be high for 
even small separations between the defending drone and the entity . Thus, the collision avoidance radius 
becomes small, hence, the repulsion is minimal. The influence of all the entities, including, friendly, enemy 
and neutral entities on a given defending drone is then: 

 

The risk of collision is minimized by navigating in the direction where the sum is minimal on top of the 
navigation vectors provided by the rule based or MARL algorithm. It is important to mention that, under 
collision risk circumstances, the vectors of the total repulsion might be much higher than the navigation 
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vectors which are bounded by default. This mechanism allows the integration of autonomous 
decision-making for navigation control while favouring safe flights through our independent collision 
avoidance mechanism. 

2.2.3 Rule-Based Algorithm for Controlled Navigation for Threat Neutralization 

The final phase in this process is the neutralizing phase. Upon verification of the conditions for capture and 
receiving authorization to engage, the navigation switches from the reinforcement-learning model to a rule-
based system. The switch to a deterministic, rule-based algorithm provides a higher degree of control during 
this critical phase. Such target capturing requires precise manoeuvres, thus warranting enhanced control beyond 
what the probabilistic RL model can provide. Initial focus prioritizes positioning the drone at an altitude higher 
than the target, assuring an optimal path for net deployment while maintaining a secure distance as per the 
collision avoidance algorithm. After achieving an optimal altitude, the drone can reduce its safety distance. This 
strategic placement, directly above the intended target, allows for a swift and precise capture attempt.  

2.3 Sensing and Tracking Mechanisms 
Sensing and tracking are integral components of the swarm-based operation, allowing our drone swarm to 
detect, approach, and neutralize enemy entities rapidly. For efficient sensing, each drone in our swarm is 
equipped with a gimbal. This gimbal, bearing an electro-optic sensor, is controlled to optimize the detection 
and tracking of enemy entities. 

Given the yaw and pitch attitudes of each individual drone, a rule-based algorithm is implemented to 
determine the optimal pan and tilt of the gimbal. The estimated difference between the yaw attitude and 
current pan of the gimbal to direct the target estimated position to the centre of the Field of View of the 
camera is . Similarly, the pitch deviation from the tilt is . The estimated position of the 
target can vary depending on the quality of the estimations, including the precision of the sensors. Due to 
this, the actual sensing control on pan and pitch of the gimbal uses a damping factor to increase 
smoothness during the movement of the gimbal, hence, the camera. Thus, the system optimizes the 
positioning of the sensor, ensuring effective sensing and subsequent stable visual tracking. Moreover, the 
zoom function of the camera is also fine-tuned given various parameters. These include the CMOS specs of 
the camera, the desired distance to the object, the estimated size of the object (i.e., the target), and the 
estimated position of the target. This calculated control helps in maintaining focused and efficient visual 
tracking by adjusting to the dynamic nature of the moving targets. 

3.0 SIMULATION AND RESULTS 

3.1 Simulation Results 
In the initial stages of this research project, primary training and testing were conducted on a multi-particle 
environment (MPE) characterized by simplistic dynamics. The fast-processing nature of the MPE allowed 
for more extensive experimentation and model fine-tuning. It was here that our model successfully 
demonstrated the potential to neutralize a smaller, faster drone using a defense swarm of five drones. The 
drones within these simulators are misrepresented as simple 3D round particles possessing momentum and 
velocity, making the MPE an ideal training ground for preliminary model development.  

Figure 1 presents the evolution of the rewards gained per episode throughout the training process on a 3D MPE 
simulator, each episode having a fixed duration. For this article, the same algorithm was used to train a swarm 
in a 2D environment on a use case of five defending drones versus one intruder. The Figure 2 includes snapshot 
of the 2-D MPE simulator with train models to showcase different collaborative defending behaviors.  
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Figure 1: Total reward collected (vertical axis) along episodes (horizontal axis) of 50 timesteps. 
Each color represents the total reward for navigation of each defending drone of the swarm.

We enriched the model’s generalization capabilities by randomizing the starting positions of the agents, 
allowing for the accommodation of an array of diverse use cases. Following these steps, the model was then 
introduced into a more realistic and comprehensive simulator for further testing and adaptation. 

Figure 2: Collaborative MARL trained model for navigation exhibiting different defensive 
behaviors on a 2D simulator for a use case of five defending drones (blue) versus one target 
drone (red). The drones approach the target in (a) with a concave formation. A linear barrier is 
spawn on some episodes (incise b). A typical behavior to catch the target is to surround it, as 
depicted in incise (c). At least one drone acting as a backup of the swarm is also common to 
observe (d).

This reinforced simulator presented a platform inclusive of collision avoidance algorithms, physical 
quadcopter dynamics, and environmental factors such as wind patterns. It replicates the actual geographic 
locality of our live flight demonstrations, offering a significant proximity to real-world conditions. 
Moreover, this simulator integrates control from the same Ground Control Station system used in actual 
flight demonstrations. These enhancements ensure an authentically realistic testing environment for the 
model, contributing to the refinement and validation of its accuracy and efficacy.

We captured significant elements from the simulation videos and translated them into Figure 3, snapshots 
illustrating different points in the scenario where our approach demonstrated robustness and effectiveness.
Figure 3 shows the initial approach of the defensive swarm against an offensive one. The figure includes the 
defending swarm as blue points, and intruders as red with a faded track of their most recent trajectory. 
Moreover, Figure 3 reveals a snapshot during the tracking phase. This figure illustrates the dynamic target 
assignation in action, agents’ coordination, and how adaptive collision avoidance prevents interferences 
between friendly entities while tracking hostile entities. Moreover, Figure 3 depicts the subsequent moments
of enemy neutralization. It reveals the spatial coordination and the implemented strategy for the enemy 
drone’s neutralization by the selected drone.
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Figure 3: Different mission phases of an autonomous defending swarm with five agents 
responding to a threat of five intruders observed in a 3D realistic simulator. The target 
assignation and Deep MARL model for navigation are depicted for the approaching phase (a) 
and the tracking phase (b). For visualization purposes, the defending drones fly idle in circles 
when they have captured a threat, as observed in (c).

3.2 Real-flight Demonstration Results
The execution and performance of our navigation algorithms, specifically those with adaptive navigation 
strategies, were successfully deployed in the field and tested against various threat scenarios. These 
algorithms were utilized across different mission phases: approach, tracking, and neutralization. Our field 
tests involved scenarios with different swarm configurations. In one scenario, the tested field consisted of a 
defensive swarm of five drones working in unison against one incoming intruding drone. Meanwhile, the 
other scenario entailed a matching two-on-two drone configuration; both scenarios demonstrated promising 
results which affirm the efficiency and safety of our swarm versus swarm methodology for autonomous 
collaborative decision-making. 

The field observations were simultaneously mirrored onto simulators to provide a comparative basis for the 
navigation algorithms’ performance. In the simulations, the defensive drone effectively captured the target in 
a safe manner. During the real-life testing, to prevent damage to drones and to facilitate continuous 
experiments, we marked the target as 'captured' when they met the specific conditions of capture, rather than 
using a physical net. 

In terms of sensing, our results highlighted the drones’ ability to visually track targets by controlling the pan, 
pitch, and zoom of an onboard camera. This refined control enhances the effectiveness of the swarm in 
tracking and neutralizing enemy drones, thus asserting the promise of our work in advancing swarm-based 
decision-making strategies, particularly within a NATO context. Our research unlocks the potential of 
autonomous collaborative swarms in both defensive and military operations.
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4.0 DISCUSSION 

The primary advantage of the proposed system is its ability to perform a dynamic target assignation 
algorithm for the shortest route assignment capable of re-planning at each time step. This unique feature aids 
efficiency and quick response, facilitating timely neutralization of hostile drones. Moreover, the centralized 
training on simulators ensures the development of robust AI models, while decentralized execution provides 
flexibility during real field operations. 

Despite its promising benefits, our approach faces several challenges. One such limitation is the need for 
well-calibrated simulators that accurately depict real-life scenarios to ensure effective learning by the drones. 
Errors in calibration could lead to discrepancies in performance when transitioning from the simulated 
environment to the field. Additionally, hostile drones’ unpredictable behaviours pose significant challenges 
to maintaining an efficient tracking and neutralization system. 

Our research’s implications for NATO operations are manifold. First, it can enhance airspace security, 
providing an efficient system for neutralizing enemy drones without risking human operators. Furthermore, 
this autonomous decision-making process can be potentially integrated into other NATO defense systems, 
contributing to the enhancement of overall defense capabilities. 

5.0 CONCLUSIONS 

5.1 Summary of Major Findings 
Our proposed swarm versus swarm methodology demonstrates an effective means for neutralizing intruding 
drones within a defined airspace. The process of using a sequential decision-making model enhanced 
efficiency and safety during autonomous operations. Real-flight demonstrations validated the strategy’s 
effectiveness, contributing to the development of robust tactics for neutralizing groups of hostile entities. 

Our approach provides significant contributions to swarm-based decision-making tactics. The unique process 
of dynamically assigning targets, coupled with an efficient algorithm for navigation and tracking elevates the 
state-of-the-art drone swarm tactics. Overall, the research offers promising solutions for military operations 
within the NATO context, shaping the future of autonomous defense systems. 

Future research should focus on developing intuitive simulators to facilitate the learning process of the 
AI models. Studies should also investigate refining algorithms to deal with the unpredictable behaviors of the 
hostile drones. Moreover, considering other neutralizing mechanisms apart from the net-related approach 
could prove beneficial. 
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